<address id="1xf3l"></address>
      <form id="1xf3l"></form>
      <form id="1xf3l"><span id="1xf3l"><th id="1xf3l"></th></span></form>

          <form id="1xf3l"></form>
          <address id="1xf3l"></address>

            產品廠商新聞方案技術培訓下載招聘品牌展會視頻媒體國防軍民融合

          1.  
             

            BP神經網絡在氣動人工肌肉拉力預測中的應用

            2016-03-03 中國測試顧寶彤, 劉 凱, 馬 韜
             
            摘  要:在氣動人工肌肉的靜態建模中,為尋找拉力與氣壓和位移的函數關系,該文利用訓練后的BP神經網絡預測氣動人工肌肉輸出力。將準靜態實驗獲得的氣壓、位移和對應的輸出拉力代入BP神經網絡進行訓練,得到氣動人工肌肉的BP神經網絡靜態模型。預測結果表明,預測拉力與試驗測得拉力相關系數達0.99以上,且通過BP神經網絡預測拉力與實測拉力誤差率在較大收縮范圍內維持在較低水平,從而證明根據BP神經網絡預測拉力的靜態模型是可行的。
            關鍵詞:氣動肌肉;驅動器;BP神經網絡;輸出力;預測
            文獻標志碼:A       文章編號:1674-5124(2015)12-0115-04
            Application of BP neural networks in force prediction of pneumatic muscle actuators
            GU Baotong, LIU Kai, MA Tao
            (College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,
            Nanjing 210016,China)
            Abstract: To find out the function relationship among force, pressure and displacement in static models of pneumatic muscle actuators, the trained BP neural network is used to predict the force of pneumatic muscle actuators in the paper. To be specific, these data obtained through quasi-static experiment are trained in the BP neural network to get a BP neural network-based static model for pneumatic muscle actuators. Prediction results show that the correlation coefficient between the predicted and experimental force is higher than 0.99 and the error rate is confined in a relative low level for a wide range of contraction. The static model is therefore proven feasible.
            Keywords: pneumatic muscle; actuator; BP neural network; output force; prediction
            舉報 收藏
             
             
             
            熱門產品
             
            推薦論文
            推薦廠商
             
            網站首頁  |  關于我們  |  聯系我們  |  廣告服務  |  版權隱私  |  積分換禮  |  友情鏈接  |  站點導航
             
            国产v亚洲v日韩v欧美v片

            <address id="1xf3l"></address>
                <form id="1xf3l"></form>
                <form id="1xf3l"><span id="1xf3l"><th id="1xf3l"></th></span></form>

                    <form id="1xf3l"></form>
                    <address id="1xf3l"></address>